Главная | О сайте | Задачи | Проекты | Результаты | Диверсификация | Новости | Вопросы | История | Информация | Ссылки
Секция Совета РАН по космосу
Владислава Ананьева
Прямое получение изображений, а тем более спектров внесолнечных планет – очень трудная задача, доступная только крупнейшим современным телескопам, и то только для горячих молодых планет, удаленных на десятки астрономических единиц от своей звезды. Однако существует сильный непрямой метод, позволяющий получать грубые спектры транзитных экзопланет. Если планета является транзитной, т.е. регулярно проходит по диску своей звезды и за звездой, то становится возможным измерить зависимость глубины транзита (а также вторичного минимума) от длины волны, т.е. провести трансмиссионную (эмиссионную) спектроскопию планеты. Подобные наблюдения уже были проведены для ряда горячих юпитеров, что позволило обнаружить в их составе натрий, водяной пар, метан и др. вещества, а также измерить температуру дневного полушария.
12 июня 2014 года в Архиве электронных препринтов появилась статья японских астрономов, посвященная трансмиссионной спектроскопии транзитного очень теплого гиганта WASP-80 b. Эта планета была открыта в 2013 году в рамках наземного транзитного обзора SuperWASP, она интересна своей умеренной эффективной температурой (~800K), глубоким транзитом (2.9%) и тем, что ее родительская звезда – сравнительно яркий (+11.9) оранжевый карлик спектрального класса K7 V. Японские астрономы сочли, что трансмиссионная спектроскопия WASP-80 b поможет определить типичные свойства умеренно нагретых планет-гигантов, более прохладных, чем обычные горячие юпитеры.
Наблюдения звезды WASP-80 проводились сразу на нескольких инструментах: на 1.88-метровом телескопе обсерватории Окаяма (Okayama Astrophysical Observatory), на 1.4-метровом телескопе Южно-Африканской обсерватории и на 50-сантиметровом телескопе MITSuME. Всего было изучено 5 транзитов, каждый в 3 или 4 различных спектральных полосах. Измеренная глубина транзитов на разных длинах волн сравнивалась с предсказаниями трех теоретических моделей планетной атмосферы: модели атмосферы солнечного химического состава с температурой 800К, модели с плотными облаками (плоский трансмиссионный спектр), и модели солнечного химического состава с высотной дымкой и температурой 600К.
В принципе, все модели неплохо описали экспериментальные данные, но ни одна не описала их точно. Так, предсказания первой модели (атмосфера солнечного химического состава с температурой 800К) отличаются от экспериментальных данных на 1.3 сигма, предсказания второй модели (плотные облака, плоский спектр) – на 1.1 сигма, предсказания третьей модели (атмосфера солнечного химического состава, высотная дымка, температура 600К) – на 0.92 сигма. Поскольку при температурах ниже 1000К термохимическое равновесие между метаном и угарным газом в атмосфере горячего гиганта смещается в сторону метана, это естественным образом приводит к появлению высотной дымки, состоящей из нелетучих углеводородов (толинов), образующихся в результате фотохимического разложения метана в атмосфере планеты под действием УФ-излучения звезды.
Авторы исследования призывают научное сообщество провести новые наблюдения планеты WASP-80 b на других длинах волн и с лучшим спектральным разрешением, чтобы уменьшить имеющуюся неопределенность и лучше определить параметры ее атмосферы.
Источник: http://arxiv.org/pdf/1406.3261.pdf
(назван по имени немецкого физика Вильгельма Карла Вернера Вина - W. K. V. Wien 1864-1928) Закон гласит, что длина волны, на которую приходится максимальная интенсивность электромагнитного излучения... [далее]
Сайт разработан и поддерживается лабораторией 801 Института космических исследований Российской академии наук.
Подбор материалов - Н.Санько
Полное или частичное использование размещённых на сайте материалов
возможно только с обязательной ссылкой на сайт Секция Солнечная система Совета РАН по космосу.