Пятница, 22.11.2024
Космическая погода на текущий час
Вход в систему не произведен
 Войти /  Регистрация

Секция Совета РАН по космосу

< Результаты исследований учёных NASA стали аргументом в пользу необходимости повторения проекта «Фобос-Грунт»
14.11.2013 00:02 Давность: 11 yrs
Категория: Экзопланеты
Количество просмотров: 7590

Семипланетная система Kepler-90 (KOI-351)



23 октября в Архиве электронных препринтов появилась статья об открытии 7-планетной системы KIC 11442793 (KOI-351), впоследствии получившей имя Kepler-90. Авторы статьи назвали новую систему «компактным аналогом Солнечной системы», и это название тут же растиражировали научно-популярные СМИ. Однако эта аналогия слишком сильная, и стоит разобраться, действительно ли планетная система Kepler-90 напоминает нашу собственную.


Владислава Ананьева

Космический телескоп им. Кеплера наблюдал звезду KIC 11442793 в течение ~4 лет (1340 земных суток). Сначала в этой системе было обнаружено три транзитных кандидата с периодами 59.7385, 210.5914 и 331.6426 земных суток и глубиной, соответствующей планетам с радиусами 2.44, 6.6 и 9.3 радиусов Земли. Впоследствии авторы статьи проанализировали кривую блеска звезды с помощью алгоритма DST и нашли в этой системе еще 4 небольшие планеты на более тесных орбитах. Таким образом, число транзитных планет в системе Kepler-90 достигло семи, что уже сравнимо с количеством классических (не карликовых) планет в Солнечной системе. 

Что мы знаем о системе KOI-351?
Звезда Kepler-90 несколько ярче и горячее Солнца. Ее спектральный класс – поздний F, масса оценивается в 1.2 ± 0.1 солнечных масс, радиус – в 1.2 ± 0.1 солнечных радиусов, температура фотосферы составляет 6080 +260/-170 К. Система удалена от нас на 780 ± 100 пк. 

Планеты в этой системе образуют иерархическую структуру, т.е. собраны в отчетливо выделенные группы. 

Первую компактную группу образуют планеты Kepler-90 b и Kepler-90 с с периодами 7.008 и 8.719 земных суток и радиусами 1.3 и 1.2 радиусов Земли, удаленные от своей звезды на 0.074 и 0.089 а.е. (13 и 16 звездных радиусов). Несмотря на крайнюю близость орбит, движение планет оказывается динамически устойчивым (в точке максимального сближения их разделяет расстояние, в 4.6 раз превышающее радиус сферы Хилла, при этом считается, что тесная пара планет оказывается устойчивой, если в точке максимального сближения их разделяет расстояние хотя бы в 3.5 радиусов сферы Хилла). Обе горячие планеты находятся вблизи орбитального резонанса 5:4, отклоняясь от него всего на 0.5%. 

Вторую компактную группу образуют планеты Kepler-90 d , Kepler-90 e и Kepler-90 f. Это три небольших нептуна с периодами 59.737, 91.939 и 124.914 земных суток (т.е. близких к резонансу 4:3:2), с радиусами 2.87, 2.66 и 2.88 радиусов Земли, удаленные от своей звезды на 0.32, 0.42 и 0.48 а.е. Движение этих планет оказывается устойчивым, если их масса не превышает ~1 массы Юпитера (что заведомо выполняется, если перед нами действительно нептуны). Температурный режим планеты Kepler-90 f примерно соответствует температурному режиму Меркурия, остальные два нептуна несколько горячее. 

Наконец, во внешней части системы находятся планеты-гиганты Kepler-90 g и Kepler-90 h. Их орбитальные периоды – 210.607 и 331.601 земных суток, уточненные радиусы – 8.1 и 11.3 радиусов Земли, расстояние от родительской звезды – 0.71 и 1.01 а.е. Обе планеты должны сильно возмущать движение друг друга, приводя к значительным вариациям времени наступления транзитов. Как оказалось, такие отклонения для планеты Kepler-90 g уже зафиксированы, причем величина отклонения составила 25.7 часов! Однако малое количество транзитных событий за время наблюдений (6 транзитов планеты Kepler-90 g и 3 транзита планеты Kepler-90 h) не позволило авторам статьи аккуратно восстановить степень их влияния друг на друга и определить массы TTV-методом. Однако движение обеих планет является динамически устойчивым, если их массы не превышают 5 масс Юпитера. 
Температурный режим самой внешней планеты примерно соответствует температурному режиму Венеры, второй гигант немного горячее (его температурный режим является промежуточным между температурными режимами Меркурия и Венеры). 

Резонно задать вопрос – а находятся ли все эти планеты в одной системе, и не является ли часть из них ложными кандидатами? Не имея возможности измерить массы планет системы Kepler-90, авторы статьи для каждой из 7 планет сравнили продолжительность транзита с орбитальным периодом и по 3-му закону Кеплера убедились, что все 7 планет вращаются вокруг одной звезды. 

Сравнение продолжительности транзита с орбитальным периодом для каждой планеты и с теоретическими предсказаниями этих величин для F-звезды со свойствами (радиусом и средней плотностью), определенными из спектральных наблюдений (диапазон возможных погрешностей показан двумя голубыми линиями). Видно, что все семь планет вращаются вокруг одной звезды, причем ее свойства согласуются со спектральными данными.

Для общей динамической устойчивости системы требуется, чтобы эксцентриситеты орбит всех планет не превышали 0.1 (т.е. орбиты должны быть близки к круговым). 

Таким образом, перед нами предстает красивая иерархически организованная система с двумя горячими планетами земного типа на очень близких и тесных орбитах, тремя нептунами в резонансе 4:3:2 посередине и двумя планетами-гигантами во внешней части системы. Если она и напоминает Солнечную систему, то весьма отдаленно. 

Глубина транзитов двух внешних планет (0.35% и 0.84%) позволяет наблюдать их с Земли. Изучение вариаций времени наступления транзитов на протяжении длительного периода времени позволит определить массы обеих планет g и h. Безусловно, в ближайшие годы это будет сделано. Для изучения свойств трех средних планет придется ждать вывода в космос европейского телескопа CHEOPS.  

Источники: http://arxiv.org/pdf/1310.6248v1.pdf
http://archive.stsci.edu/kepler/planet_candidates.html


Комментарии

Комментарии

Вход в систему

Введите имя пользователя и пароль для входа в систему:
Вход в систему

Забыли пароль?

Информация

(от лат. informatio – разъяснение, изложение) Информация - это свойство материи, обеспечивать хранить и передавать характеристики (свойства, параметры и т.д.) материи в ее проявлениях - физических объектах, процессах и, в том числе, в продуктах деятельности разума... [далее]

Rambler's Top100