Главная | О сайте | Задачи | Проекты | Результаты | Диверсификация | Новости | Вопросы | История | Информация | Ссылки
Секция Совета РАН по космосу
Владислава Ананьева
В отличие от транзита, который позволяет прозондировать свойства атмосферы транзитной экзопланеты по линии терминатора (границы между дневной и ночной стороной), вторичный минимум позволяет получить информацию о ее дневном полушарии. Вторичный минимум на кривой блеска системы «звезда + планета» возникает тогда, когда планета заходит за звезду. Измерение глубины вторичного минимума позволяет определить альбедо транзитной планеты, а сравнение этой глубины на разных длинах волн – получить грубый спектр ее дневного полушария.
Именно это и было проделано с хорошо известным транзитным горячим юпитером HD 189733 b. С помощью космического телескопа им. Хаббла астрономы измерили глубину вторичного минимума и альбедо HD 189733 b в синих (длина волны 290-450 нм) и зеленых (длина волны 450-570 нм) лучах. В синих лучах альбедо оказалось неожиданно большим и достигло величины 0.40 ± 0.12, а в зеленых лучах вторичный минимум вообще не был зафиксирован (что, с учетом погрешностей наблюдений, дало верхний предел на альбедо HD 189733 b в этом диапазоне – 0.12).
Как объяснить полученный результат?
Согласно современным моделям горячих юпитеров, в их атмосферах присутствуют газообразные щелочные металлы натрий и калий. Линии поглощения этих металлов, сильно уширенные за счет соударений атомов с молекулами атмосферы (в основном, конечно, речь идет о дублетной линии натрия 589 нм, расположенной в желтой части спектра, и дублетной линии калия 770 нм, расположенной в красной части спектра), делают атмосферу горячего юпитера мутной, непрозрачной. В отсутствии облаков это приводит к очень низкому альбедо таких планет, на уровне нескольких процентов. Для большинства горячих юпитеров это модельное предсказание прекрасно согласуется с наблюдениями.
Однако некоторые горячие юпитеры имеют высокое альбедо (так, гигант Kepler-41 b имеет альбедо 0.30 ± 0.08). Это может быть вызвано наличием в их атмосфере высоких облаков, состоящих, например, из энстатита MgSiO3. Если высота силикатных облаков значительно превышает высоту, на которой становится важным поглощение света атомами натрия и калия, альбедо планеты оказывается достаточно высоким и мало зависящим от длины волны. Если, наоборот, облака расположены много глубже уровня, где происходит основное поглощение света, альбедо планеты становится очень низким (как и в случае полного отсутствия облаков). Самое интересное происходит, когда эти уровни оказываются близки. В этом случае сочетание сильного поглощения света в желтой и красной области спектра и рэлеевского рассеяния света на очень мелких частицах энстатита делает альбедо высоким для синих лучей и низким – для зеленых, желтых и красных (что и наблюдается в случае планеты HD 189733 b).
Гигант HD 189733 b оказывается не похожим по цвету ни на одну из планет Солнечной системы, включая Нептун.
Источник: http://arxiv.org/pdf/1307.3239.pdf
(назван по имени английского математика, физика, астронома Исаака Ньютона - I. Newton 1643-1727) Важнейший для понимания процессов во Вселенной закон формулируется следующим образом... [далее]
Сайт разработан и поддерживается лабораторией 801 Института космических исследований Российской академии наук.
Подбор материалов - Н.Санько
Полное или частичное использование размещённых на сайте материалов
возможно только с обязательной ссылкой на сайт Секция Солнечная система Совета РАН по космосу.