Главная | О сайте | Задачи | Проекты | Результаты | Диверсификация | Новости | Вопросы | История | Информация | Ссылки
Секция Совета РАН по космосу
Увязать квантовую гравитацию с общей теорией относительности можно двумя способами — с помощью теории струн (в последнее время нещадно критикуемой) или гипотезы петлевой квантовой гравитации.
Вторая теория утверждает, что пространство и время (или даже пространство-время) состоят из дискретных частей — маленьких квантовых ячеек, определённым способом соединённых между собой. На малых масштабах времени и размерности они создают пёструю, дискретную (квантовую по свойствам) структуру пространства, а на больших — плавно переходят в непрерывное (хотя и состоящее из дискретных элементов) и гладкое пространство-время.
Хотя многие космологические модели могут описать поведение Вселенной только после Большого взрыва (планковское время), петлевая квантовая гравитация распространяет своё влияние в том числе на момент самого взрыва, а теоретически и на некие процессы, происходившие «до».
Если теория петлевой квантовой гравитации верна, то длина дискретных частей пространства равна планковской длине — менее триллионной части диаметра атома водорода. Вот только как её проверить? Ведь измерение положения физических объектов с точностью до планковской длины проблематично. Если мы хотим определить положение объекта и пошлём на него поток фотонов, то чем больше энергия фотонов, тем короче длина их волны и тем меньшую длину можно измерить при их помощи. Если же фотон будет иметь энергию, достаточную для измерения объектов размером с планковскую длину, он сколлапсирует в микроскопическую чёрную дыру.
Так считалось долгое время. Поэтому никто не пытался даже проверить теорию о дискретности пространства-времени. Теперь, однако, физик Роберт Немирофф из Мичиганского технологического университета (США) заявил, что такой способ есть. Просто для него нужно использовать фотоны предельно высоких энергий и огромное расстояние рассеивания — в миллиарды световых лет. Очевидно, на Земле такую экспериментальную установку не создать. Поэтому учёный обратился к результатам наблюдений космического гамма-телескопа «Ферми». В 2009 году с его помощью были зарегистрированы серии гамма-фотонов энергией более 1 ГэВ от источников GRB 080916C, GRB 090510A, GRB 090902B, и GRB 090926A.
Напомним: чем больше энергия фотона, тем меньше длина его волны и с тем меньшими объектами он взаимодействует. Хотя его размеры всё ещё намного больше планковской длины, при пропускании через огромное количество таких дискретных участков пространства-времени рассеивание отдельных фотонов одной гамма-вспышки будет неизбежно.
Если рассеивание гамма-фотонов налицо, то их пучок от одной вспышки должен приходить с большими промежутками между одиночными фотонами. Однако анализ г-на Немироффа этого не показал: они прибывали от вспышки, находящейся на удалении в 7 млрд световых лет, с разрывами всего в одну миллисекунду, и делали это систематически. Иными словами, нет рассеивания — нет и дискретности?
Именно этот вывод сделал Роберт Немирофф. То есть, конечно, в препринте он высказался осторожнее, но в интервью так прямо и заявил: «Мы показали, что Вселенная ”гладкая” [непрерывная, недискретная] в пределе планковской массы… Это означает, что нет никакой зыби [дискретности], которую можно обнаружить».
Если быть совсем точным, то в действительности показано, лишь то, что пространство-время гладкое (недискретное) для планковской массы и слегка выше. Этого не вполне достаточно для опровержения теории квантовой петлевой гравитации, но о существенном ослаблении её позиций говорить в данном случае, бесспорно, можно.
Соответствующая статья опубликована в журнале Physical Review Letters, а с её препринтом можно ознакомиться здесь.
Подготовлено по материалам Мичиганского технологического университета.
Текст: Александр Березин
(назван по имени английского математика, физика, астронома Исаака Ньютона - I. Newton 1643-1727) Важнейший для понимания процессов во Вселенной закон формулируется следующим образом... [далее]
Сайт разработан и поддерживается лабораторией 801 Института космических исследований Российской академии наук.
Подбор материалов - Н.Санько
Полное или частичное использование размещённых на сайте материалов
возможно только с обязательной ссылкой на сайт Секция Солнечная система Совета РАН по космосу.