Главная | О сайте | Задачи | Проекты | Результаты | Диверсификация | Новости | Вопросы | История | Информация | Ссылки
Секция Совета РАН по космосу
Одними из первых об этой опасности заговорили наши соотечественники В.И. Красовский и И.С. Шкловский. Найти сейчас их оригинальную статью 1957 года в Докладах АН СССР довольно проблематично, но, к счастью, И.С. Шкловский изложил содержание статьи в более доступной книге «Сверхновые звёзды» 1966 года. Разные авторы, правда, ссылаются ещё и на статью О. Шиндевольфа в журнале «Neues Jahrbuch fuer Geologie und Paleontaeontologie» 1954 года, в которой как будто бы также написано об опасности сверхновых, но уж эту-то работу у нас точно не найти.
Так или иначе, эти опасения высказывались уже в 1950-е годы, когда представления о природе вспышек сверхновых были даже туманнее, чем сейчас. Однако для оценки последствий взаимодействия Солнечной системы с факторами взрыва не так важна его природа; достаточно знать внешние проявления. Эти проявления, по крайней мере по части оптического излучения, известны с давних времён, однако их связь с колоссальной энергетикой события стала очевидна только после установления шкалы межгалактических расстояний. В начале 1920-х годов выяснилось, что вспыхивающие звёзды, которые с лёгкой руки Тихо Браге назывались новыми, разделяются на две очень разные группы, причём звёзды из одной группы в десятки тысяч раз превосходят по яркости новые из второй группы. Для этих особенно ярких новых предлагались разные имена: исключительные новые, гигантские новые, главные новые… Но прижилось имя, придуманное в начале 1930-х годов Ф. Цвикки и В. Бааде, — сверхновая. Бааде и Цвикки также связали вспышки сверхновых с финальным коллапсом проэволюционировавших звёзд.
Взрыв звезды воздействует на окружающее пространство, в том числе и на несчастливые окрестные планетные системы, как минимум тремя способами: излучением, ускорением частиц космических лучей и разлетающейся оболочкой/ударной волной. Причём излучение и космические лучи могут действовать как импульсно, будучи связанными непосредственно с взрывом, так и более длительное время, будучи связанными с последующей эволюцией оболочки. Шкловский самым важным последствием считал длительное повышение плотности космических лучей, вызванное погружением планетной системы в остаток сверхновой. Причём он рассматривал космические лучи не как источник непосредственного разрушения жизни, а, скорее, как сильный мутагенный фактор, продолжительное воздействие которого для некоторых живых существ необязательно будет отрицательным.
Такое мнение в 1960-1970-е годы разделяли не все. Тогда не исключалось, что взрыв сверхновой может сопровождаться настолько мощным импульсом жёсткого излучения и космических лучей, что он способен на расстоянии десятков световых лет сильно разогреть земную атмосферу, глобально дестабилизировать климат, облучить живые организмы смертельными дозами радиации и даже вызвать закипание поверхности Луны. Сверхновая неоднократно предлагалась в качестве замены для астероида, предположительно погубившего динозавров. В этой альтернативной гипотезе динозавров погубило жёсткое излучение, а выпадение на Землю испарившегося лунного вещества обеспечило избыток иридия, принятый позже за признак падения астероида.
Накопление наблюдательных данных о сверхновых и совершенствование теоретических моделей постепенно привели к выводу, что представления о прямых последствиях вспышки сверхновой сильно преувеличены. Однако в 1974 году М. Рудерман обратил внимание на то, что эффект вспышки может быть и непрямым. Точнее, он предположил, что избыточное ионизующее излучение сверхновой за пределами атмосферы может привести к разрушению озонового слоя. Частица космических лучей или жёсткий фотон разрушают молекулу азота, свободный атом азота объединяется с атомом кислорода в молекулу NO, а она, вступая в реакцию с озоном (O3), превращает его в молекулярный кислород (O2). Рудерман оценил, что сверхновая, вспыхнувшая на расстоянии около 50 световых лет от Земли, совокупным действием жёсткого излучения и космических лучей способна на столетия снизить атмосферное содержание озона от нескольких раз до нескольких десятков раз.
Однако это были приблизительные оценки. Потом произошло важное событие — вспыхнула Сверхновая 1987А, позволившая существенно уточнить энергетический выход взрыва. И в 2003 году был опубликован новый расчёт разрушения озонового слоя. Н. Герелс и его соавторы взяли за основу детальную модель земной атмосферы вплоть до высот более 100 км, снабдили её подробным химическим блоком и исследовали отклик модельной атмосферы на облучение гамма-квантами и космическими лучами от сверхновой, вспыхнувшей на различных расстояниях, учитывая даже направление, с которого сверхновая «светит» на нашу планету. Оказалось, что отклик этот существенно менее значителен, чем тот, что получил Рудерман: чтобы озоновая защита от солнечного ультрафиолета ослабла в два раза, сверхновая должна вспыхнуть на расстоянии не более 25-30 световых лет.
Детальное исследование взаимодействия гелиосферы с ударной волной от вспышки сверхновой было опубликовано в 2008 году Б. Филдсом с соавторами. Здесь важно рассматривать именно гелиосферу: прежде чем ударная волна сможет воздействовать на Землю, она должна раздавить нашу защитную оболочку. Авторы численно подвергали гелиосферу ударам со стороны сверхновых, вспыхнувших на разных расстояниях, стараясь учесть максимум современной информации о строении гелиосферы и о её изменениях в зависимости от фазы солнечной активности. Критерием опасности Филдс и его коллеги считали способность ударной волны сжать гелиосферу до размеров земной орбиты. После этого вред оказывается двойным: на Землю может действовать и само вещество остатка сверхновой, и опасные факторы (галактические космические лучи, межзвёздное вещество), от которых нас обычно защищает гелиосфера. Оказалось, что и по этому критерию опасной оказывается вспышка, случившаяся на расстоянии не более 30 световых лет от Земли.
Иными словами, чтобы прямо или косвенно, быстро или медленно подействовать на Землю, сверхновая должна взорваться не дальше нескольких десятков световых лет от Солнечной системы. Сейчас потенциальных «зарядов» рядом с нами нет, но нельзя исключить возможность такого опасного соседства в будущем и прошлом. Простые оценки показывают, что при общем темпе вспышек сверхновых в Галактике порядка 1-2 за столетие вспышка на критическом расстоянии от Земли должна происходить в среднем примерно раз в несколько сотен миллионов лет. Естественно, возникает искушение привязать эти катастрофы к массовому вымиранию, но это искушение трудно чем-то подкрепить: сверхновая не астероид, она не оставляет после себя кратера.
Правда, какие-то следы всё-таки можно найти. Для не очень давних событий признаком вспышки может стать избыток содержания некоторых радиоактивных элементов в слоях определённого возраста. И такой избыток железа-60 действительно был найден в 1999 году К. Кни с соавторами в образцах океанической коры с возрастами порядка нескольких миллионов лет. Поскольку на Земле железу-60 взяться неоткуда, какое-то время этот избыток считался признаком близкой вспышки сверхновой, произошедшей около 3 млн лет назад. Однако в последние годы сами авторы несколько усомнились в такой интерпретации. Во-первых, слой с избытком 60Fe оказался толстоват, как будто бы намекая, что вброс радиоактивного железа длился дольше, чем можно ожидать от процесса взаимодействия с ударной волной. Во-вторых, этот избыток найден в Тихом океане, но отсутствует в Атлантическом… Авторы предположили, например, что Земля могла налететь на облачко, обогащённое продуктами взрыва, но не на сам остаток. Как пишут почти во всех научных статьях, нужны дополнительные исследования.
В общем, сверхновые должны были взрываться вблизи Земли, но никаких убедительных свидетельств этого пока не найдено. Шансы увидеть сверхновую вблизи в будущем тоже очень малы, как бы астрономам этого ни хотелось. Правда, помимо обычных сверхновых есть ещё более мощные (и потому потенциально более опасные) явления, связанные с гамма-всплесками. Для них опасное расстояние может оказаться гораздо больше, чем для обычной сверхновой, измеряясь уже в тысячах световых лет, однако их выбросы, вероятно, обладают высокой направленностью, так что вероятность попасть «под обстрел» крайне мала.
Источник: колонка Вибе на Компьютерре
(назван по имени английского математика, физика, астронома Исаака Ньютона - I. Newton 1643-1727) Важнейший для понимания процессов во Вселенной закон формулируется следующим образом... [далее]
Сайт разработан и поддерживается лабораторией 801 Института космических исследований Российской академии наук.
Подбор материалов - Н.Санько
Полное или частичное использование размещённых на сайте материалов
возможно только с обязательной ссылкой на сайт Секция Солнечная система Совета РАН по космосу.